Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan Yu, Chang Liu and Xingyu Yang*

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail:
yuyan801206@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.161$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5,5-Dimethyl-4-(3-nitrophenyl)-2-oxo-2-(2-pyridyl-amino)-1,3,2-dioxaphosphorinane

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$, molecules are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming rings with an $R_{2}^{2}(8)$ motif.

Comment

The development of intumescent flame-retardant systems (IFR) has become an active research field due to their low smoke and low toxicity characteristics (Leman \& Robertson, 1978; Halpen \& Mott, 1984; Wolter \& Hans, 1985). A number of phosphorus and nitrogen heterocyclic compounds have been shown to have good IFR properties (Jacobson et al., 1991; Rui et al., 1997; Yang et al., 1991) and we report here the molecular structure of one such compound, 5,5-dimethyl-4-(3-nitrophenyl)-2-oxo-2-(2-pyridylamino)-1,3,2-dioxaphosphorinane, (I).

(I)

The structure of (I) is shown in Fig.1. The P atom of the oxodioxaphosphorinane ring carries a pyridylamine substituent, with a 3-nitrophenyl substituent at C 7 and two methyl groups on C8. The oxaphosphorinane ring adopts a chair conformation. In the crystal structure, molecules form hydrogen bonded dimers linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded dimers about an inversion centre in an $R_{2}^{2}(8)$ motif (Fig. 2).

Experimental

The title compound, (I), was prepared according to the procedure of Maier (1976). Suitable crystals were obtained by vapor diffusion of dioxane into a dimethylformamide solution at room temperature (m.p. 521 K). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3134, 1596, 1469, 1220, 1045, 1006, 976. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.35-6.90(m, 8 \mathrm{H}), 9.21(s, 1 \mathrm{H}), 5.25-3.95$ $(d d, 3 \mathrm{H}), 1.15(s, 3 \mathrm{H}), 0.82(s, 3 \mathrm{H})$. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}: \mathrm{C} 52.90$, H 4.99, P 8.53\%; found: C 52.81, H 5.11, P 8.40\%.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$
$M_{r}=363.30$
Triclinic, $P \overline{1}$
$a=8.5644$ (14) \AA
$b=9.4816$ (16) A
$c=11.7155$ (19) \AA
$\alpha=79.093(3)^{\circ}$
$\beta=73.925(3)^{\circ}$
$\gamma=75.318(3)^{\circ}$
$V=877.0(3) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.946, T_{\text {max }}=0.981$
6266 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.161$
$S=1.09$
3401 reflections
232 parameters

$Z=2$

$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2765 reflections
$\theta=2.2-28.1^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

3401 independent reflections
2822 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1005 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.48 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(1)$	$1.91(1)$	$2.766(2)$	$179(2)$

Symmetry code: (i) $-x+1,-y+2,-z+1$.
The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Science Foundation of Wuhan City (grant No. 20021002052).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Halpen, Y. \& Mott, D. M. (1984). Ind. Eng. Chem. 23, 233-238.

Figure 1
View of (I), showing the labelling of the non-H atoms and 50% probability ellipsoids.

Figure 2

A view of the crystal packing down the a axis. Hydrogen bonds are shown as dashed lines. [Symmetry code: (a) $1-x, 2-y, 1-z$.]

Jacobson, R. M., Nguyen, L. T. \& Ramsay, J. R. (1991). Patent Appl. EP 437 335.

Leman, J. D. \& Robertson, A. J.(1978). US Patent No. 4080501.
Maier, L. (1976). Metal Org. Chem. 6, 133-155.
Rui, L. S., Guang, F. Y. \& Wei, S. M. (1997). Chin. Chem. Lett. 8, 855-858.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wolter, T. H. \& Hans, W. (1985). J. Org. Chem. Lett. 50, 4508-4514.
Yang, H. Z, Wu, Y. \& Zhang, Y. F. (1991). Chem. J. Chin. Univ. 12, 44-46.

